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XXXII. Moment-Generating Functions

Premise

• We have several random variables, Y1, Y2,
etc.

• We want to study functions of them:
U (Y1, . . . , Yn).

• Before, we calculated the mean of U and the
variance, but that’s not enough to determine
the whole distribution of U .

Goal

• We want to find the full distribution
function FU(u) := P (U ≤ u).

• Then we can find the density function
fU(u) = F ′U(u).

• We can calculate probabilities:

P (a ≤ U ≤ b) =

∫ b

a

fU(u) du = FU(b)−FU(a)

Three methods

1. Distribution functions. (Two lectures ago,
using geometric methods from Calculus III.)

2. Transformations. (Previous lecture, using
methods from Calculus I.)



Will Murray’s Probability, XXXII. Moment-Generating Functions 2

3. Moment-generating functions. (This
lecture.)

Review of Moment-Generating Functions

• Recall: The moment-generating function
for a random variable Y is

mY (t) := E
(
etY
)
.

• The MGF is a function of t (not y).

See previous lecture on MGFs.

MGFs for the Discrete Distributions

Distribution MGF

Binomial
[
pet + (1− p)

]n
Geometric

pet

1− (1− p)et

Negative binomial

[
pet

1− (1− p)et

]r
Hypergeometric No closed-form MGF.

Poisson eλ(e
t−1)
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All are functions of t.
In the first three, we could substitute q := 1− p.

MGFs for the Continuous Distributions

Distribution MGF

Uniform
etθ2 − etθ1
t (θ2 − θ1)

Normal eµt+
t2σ2

2

Gamma (1− βt)−α

Exponential (1− βt)−1

Chi-square (1− 2t)−
ν
2

Beta No closed-form MGF.

Note that exponential is just gamma with α := 1,

and chi-square is gamma with α :=
ν

2
and β := 2.

Useful Formulas with MGFs

• Let Z := aY + b. Then

mZ(t) = ebtmY (at) .
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• Suppose Y1 and Y2 are independent variables
and Z := Y1 + Y2. Then

mZ(t) = mY1(t)mY2(t)

How to use MGFs

• Given a function U (Y1, . . . , Yn), find its
MGF mU(t).

• Use the useful formulas on the previous
slide.

• Then compare it against your charts to see
if you recognize it as a known distribution.

Example I

Let Y be a standard normal variable. Find the
density function of U := Y 2.
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mY 2(t) := E
[
etY

2
]

:=
1√
2π

∫ ∞
−∞

ety
2

e−
y2

2 dy

Combine exponents: =
1√
2π

∫ ∞
−∞

e−
y2

2
(1−2t) dy

=
1√
2π

∫ ∞
−∞

e
− y2

2( 1
1−2t) dy

To simplify this, recall that
1

σ
√

2π

∫ ∞
−∞

e−
y2

2σ2 dy =∫
(normal density) = 1 for any temporary σ.

Take temporary σ :=
1√

1− 2t
:

= σ
1

σ
√

2π

∫ ∞
−∞

e−
y2

2σ2 dy

= σ

= (1− 2t)−
1
2

From your chart of mgfs, this is
chi-square with ν = 1 , so we have the density:

Gamma : f(y) :=
yα−1e−

y
β

βαΓ(α)
, 0 ≤ y <∞

χ2 is gamma with α :=
ν

2
, β := 2.

fU(u) =
u−

1
2 e−

u
2

√
2Γ
(
1
2

) , u > 0 Γ

(
1

2

)
=
√
π

=
u−

1
2 e−

u
2

√
2π

, u > 0

That’s one reason why chi-square is important.
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Example II

Let Y1, Y2 be independent standard normal
variables. Find the density function of
U := Y 2

1 + Y 2
2 .

mU(t) = mY 2
1 +Y 2

2
(t)

= mY 2
1

(t)mY 2
2

(t)

= (1− 2t)−
1
2 (1− 2t)−

1
2 from above

= (1− 2t)−1

Looking at the chart, this is
chi-square with ν = 2 .

Gamma : f(y) :=
yα−1e−

y
β

βαΓ(α)
, 0 ≤ y <∞

χ2 is gamma with α :=
ν

2
, β := 2.

So fU(u) =
e−

u
2

2
, u > 0 . (It’s also exponential

with β = 2.)

In general, if Z1, . . . , Zn ∼ N(0, 1), then
n∑
i=1

Z2
i ∼ χ2(n).

That’s one reason why chi-square is important.

Example III

Let Y1, . . . , Yr be independent binomial variables
representing n1, . . . , nr flips of a coin that comes
up heads with probability p. Find the probability
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function of U := Y1 + · · ·+ Yr.

Note that 0 ≤ u ≤ n1 + · · ·+ nr.

mYi(t) =
[
pet + (1− p)

]ni
mU(t) := mY1+···+Yr(t)

= mY1(t) · · ·mYr(t)

=
[
pet + (1− p)

]n1 · · ·
[
pet + (1− p)

]nr
=

[
pet + (1− p)

]n1+···+nr

This is binomial with probability p and n := n1 +
· · ·+ nr, so

p(u) =

(
n1 + · · ·+ nr

u

)
puqn1+···+nr−y, 0 ≤ u ≤ n1 + · · ·+ nr .

Example IV

Let Y1 and Y2 be independent Poisson variables
with means λ1 and λ2. Find the probability
function of U := Y1 + Y2.
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mYi(t) = eλi(e
t−1)

mU(t) := mY1+Y2(t)

= mY1(t)mY2(t)

= eλ1(e
t−1)eλ2(e

t−1)

= e(λ1+λ2)(e
t−1)

This is Poisson with mean λ1 +λ2. (If you expect
to see λ1 cars at an intersection and λ2 trucks, you
expect to see λ1 + λ2 vehicles total.)

p(y) =
λye−λ

y!

p(u) =
(λ1 + λ2)

u e−λ1−λ2

u!
, 0 ≤ u <∞

Example V

Let Y1, . . . , Yn be independent normal variables,
each with mean µ and variance σ2. Find the

distribution of Y :=
1

n
(Y1 + · · ·+ Yn).



Will Murray’s Probability, XXXII. Moment-Generating Functions 9

Let Y := Y1 + · · ·+ Yn.

mY (t) = mY1(t) · · ·mYn(t)

=
(
eµt+

σ2t2

2

)n
= eµnt+

σ2t2n
2

maY+b(t) = ebtmY (at)

mY = mY

(
t

n

)
= eµt+

σ2t2

2n

This is a normal distribution with mean µ, variance
σ2

n
.

Example VI

Let Y1 and Y2 be independent exponential
variables, each with mean 3. Find the density
function of U := Y1 + Y2.
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mYi(t) = (1− 3t)−1

mU(t) := mY1+Y2(t)

= mY1(t)mY2(t)

= (1− 3t)−1(1− 3t)−1 = (1− 3t)−2

This is gamma with α = 2, β = 3:

fU(u) =
uα−1e−

u
β

βαΓ(α)

=
ue−

u
3

32Γ(2)

=
1

9
ue−

u
3 , 0 ≤ u <∞


